গুণের গণনার খেলা

আজকে আমাদের আলোচনার বিষয়ঃ গুণের গণনার খেলা । এটি সপ্তম শ্রেনী গণিতের সূচকের গল্প এর অন্তর্গত।

 

গুণের গণনার খেলা

 

গুণের গণনার খেলা

অনেক অনেক বছর আগে কোন অঞ্চলে একজন রাজা ছিলেন। একদিন রাজার দরবারে এক বিদেশি পর্যটক এলেন, সাথে নিয়ে এলেন ভীষণ সুন্দর এক চিত্রকর্ম। রাজা খুশি হয়ে পর্যটককে সেই চিত্রকর্মের মূল্য দিতে চাইলেন। কিন্তু পর্যটক সরাসরি কোন মূল্য না চেয়ে বললেন, “এই চিত্রকর্মের মূল্য দেওয়ার নিয়ম একটু ভিন্ন। ” রাজা জিজ্ঞেস করলেন, “বলো দেখি কি নিয়ম!” পর্যটক বললেন, টানা ৫০ দিন ধরে এর মূল্য নিবেন। প্রথম দিন তিনি ১ টাকা নিবেন। দ্বিতীয় দিন তার দ্বিগুণ, অর্থাৎ ২ টাকা। তার পরের দিন নিবেন দ্বিতীয় দিনের দ্বিগুণ, অর্থাৎ ৪ টাকা। এভাবে তিনি ৫০ দিন ধরে ঐ চিত্রকর্মের মূল্য নিবেন। হিসাবটি অনেকটা নিচের ছকের মত।

ছক

দিন

গুণের কাজ

টাকার পরিমাণ

১ × ২

২× ২

২ × ২

রাজা ভাবলেন, এ আর এমন কি, তিনি রাজি হয়ে গেলেন। এভাবে প্রত্যেকদিন পর্যটক এসে রাজ দরবার থেকে মূল্য নিয়ে যান। কিন্তু ২০ দিন যাওয়ার পর রাজার টনক নড়ে বসলো। ভাবো তো কি কারণে সেটি হল? তোমরা ছক ০.১ এর ন্যায় একটি ছক খাতায় তৈরি করে ৫ম দিন হতে ২০তম দিন পর্যন্ত টাকার পরিমাণটি নির্ণয় করো।

কিন্তু পর্যটক কী পদ্ধতিতে হিসাবটি দাঁড় করিয়েছে, তা কি ধরতে পারছো? হিসাবটি বুঝার জন্য হাতে কলমে আরও একটি কাজ করে দেখি, চলো।

কাগজ ভাঁজের খেলা

কাগজ ভাঁজের খেলাটি খেলার জন্য নিচের ধাপগুলো অনুসরণ করো :

 

গুণের গণনার খেলা

 

১. A4 বা বড় খাতার মাপের একটি কাগজ নাও।

২. কাগজটির চারপাশে এমনভাবে কলম দিয়ে দাগ টানো যেন কাগজটিকে একটি আয়তক্ষেত্র মনে হয়।

৩. এখন কাগজটিকে সমান ২ ভাগে ভাঁজ করো কোনো ভাঁজ নেই এবং ভাঁজ বরারবর কলম দিয়ে দাগ টানো। ফলে দুইটি ঘর পাওয়া গেল।

৪. আগের ভাঁজটি ঠিক রেখেই আবার কাগজটিকে ২ ভাগে ভাঁজ করো এবং আগের মত করেই দাগ দাও । এবার কয়টি সমান ঘর পাওয়া গেলো?

৫. অনুরূপ ভাবে আগের ভাঁজটি ঠিক রেখে আরও ৩ বার ভাঁজ করো এবং দাগ দাও। একই ভাবে ভাঁজ করতে থাকলে কত তম ভাঁজে কয়টি ঘর পাওয়া যাবে নিচের ছকে (১.১) পূরণ করার চেষ্টা করো।

পরবর্তীতে, দুইটি সমান ভাঁজের জায়গায় প্রতিবারে ৩ টি করে ভাঁজ করো এবং মোট ৪ বার ভাঁজ করে ছক ১.১ এর ন্যায় ছক ১.২ পূরণ করো।

 

গুণের গণনার খেলা

 

এবার চলো আমরা শ্রেণিকক্ষে বসেই একটি কাজ করি। তোমাদের যাদের রোল জোড় সংখ্যা তারা ৬ সংখ্যাটি নিচের ছকে লিখো এবং যাদের রোল বিজোড় তারা ৫ সংখ্যাটি নিজের ছকে লিখো।

 

গুণের গণনার খেলা

 

এখন, তুমি যে সংখ্যাটি নিলে, সেই সংখ্যাটিকে, সেই সংখ্যাটি দিয়ে ১ বার গুণ করো এবং তা নিচের ছকের ন্যায় পূরণ করো। ভেবে দেখো কি হতে পারে? তোমার রোল যদি বিজোড় হয় তাহলে দুটি ৫ গুণাকারে থাকবে। অর্থাৎ, গুণাকার হবে ৫×৫। তোমার রোল যদি জোড় হয় তাহলে দুটি ৬ গুণাকারে থাকবে। অর্থাৎ, গুণাকার হবে ৬×৬।

 

গুণের গণনার খেলা

 

এখন আগের বারের মতই, সেই সংখ্যাটি দিয়ে ২ বার গুণ করো এবং নিচের ছকে গুণাকারে লেখো। গুণফল কত পেলে?

 

গুণের গণনার খেলা

 

এমন করে ৩ বার, ৪ বার ও ৫ বার গুণ করো এবং নিচের ছকে লেখো। সুবিধার জন্য আংশিক পূরণ করে দেয়া হয়েছে ছকটি

 

গুণের গণনার খেলা

 

ছকটি পূরণ করা হলে তোমরা আরেকটি কাজ করো। এবার সংখ্যাটিকে ১০ বার, ১১ বার এবং ১২ বার গুণ করে নিচের ছকে শুধু গুণাকারে লেখো।

 

গুণের গণনার খেলা

 

ছকে গুণাকারে লিখতে অনেক জায়গা ও সময় লাগলো, তাই না? কিন্তু, আসলে খুব সহজে, অল্প জায়গায় ও একদম অল্প সময়ে এরকম বড় বড় গুণাকারগুলো লিখে ফেলা সম্ভব।

চিন্তা করে দেখো, তো ছক ১.৩ থেকে ছক ১.৬ -এ, প্রতি ক্ষেত্রে গুণাকারে কতটি করে সংখ্যা ছিল? আমরা খুব সহজেই সেটির সাহায্যে গুণাকারটিকে অন্য উপায়ে লিখতে পারি। এক্ষেত্রে আমরা আরেকটি ছকের সাহায্য নিবো।

 

 

গুণের গণনার খেলা

 

তোমরা কি বুঝতে পারছো এখানে কি হচ্ছে? এখানে যতটি একই সংখ্যা গুণাকারে রয়েছে আগে সেটিকে লেখা হচ্ছে এবং এর পরে যতবার রয়েছে তাকে সেই সংখ্যাটির উপরে ডান পাশে বসানো হয়েছে। এখন নিজেরা দেখো তো কাজটি করতে পারো কিনা। নিচের ছকটি পূরণ করে ফেলো।

 

গুণের গণনার খেলা

 

এবার চিন্তা করো। তুমি তোমার নেয়া সংখ্যাটিকে ১০ বার, ১১ বার এবং ১২ বার গুণ করে ছক পূরণ করেছিলে। কাজটি করতে কষ্ট হয়েছিল তাই না? তাহলে নিচের ছকটিতে নতুন যে নিয়ম শিখলে সেটি অনুযায়ী দেখো তো লিখতে পারো কীনা?

 

গুণের গণনার খেলা

 

খেয়াল করো:

চিত্র ৭.২.৩-তে দেখো, একই সংখ্যা বার বার গুণ আকারে লেখার বদলে আমরা ঐ সংখ্যার ডানপাশে উপরে ছোট করে নির্দেশ করে দিচ্ছি একই সংখ্যাকে কতবার গুণ করা হয়েছে। গণিতের ভাষায় একে বলে সূচক। নিচের ছবিটি দেখো।

 

গুণের গণনার খেলা

 

৩ হলো ভিত্তি। আর ৩-কে যেহেতু ৪ বার গুণ করা হয়েছে, তাই ৪ হলো ৩-এর সূচক। আমরা নতুন আরও একটি শব্দ শিখেছি- শক্তি বা power.

তাহলে বোঝা গেলো যে সূচকের মাধ্যমে আমরা খুব সহজেই বড় একটি গুণের কাজকে এক নিমেষেই সংক্ষেপে প্রকাশ করতে পারি। তাহলে এবার দেখে নেওয়া যাক সূচক দিয়ে সংখ্যাকে প্রকাশ করলে তা কীভাবে পড়বো।

 

সূচকীয় রাশি

কীভাবে পড়বো?

৩^২ ৩ to the power ২ বা ৩-এর সূচক বা ঘাত ২।

[কোন সংখ্যার সূচক বা ঘাত ২ এর অর্থ হলো সেই সংখ্যাকে বর্গ করা হয়েছে। ৩-এর | ক্ষেত্রে তাই আমরা একে ৩ squared অথবা ৩-এর বর্গ-ও বলতে পারি। ]

৩^৩ ৩ to the power ৩ বা ৩-এর সূচক বা ঘাত ৩।

[কোন সংখ্যার সূচক বা ঘাত ৩ এর অর্থ হলো সেই সংখ্যাকে ঘন করা হয়েছে। ৩-এর ক্ষেত্রে তাই আমরা একে ৩ cubed অথবা ৩-এর ঘন-ও বলতে পারি। ]

৩^৪ ৩ to the power 8, বা ৩ এর সূচক বা ঘাত ৪
৩^৫ ৩ to the power ৫, বা ৩ এর সূচক বা ঘাত ৫

 

এই যে বড় বড় গুণাকারকে সহজে লেখার যে পদ্ধতি দেখানো হল, সেটিই মূলত সূচকীয় পদ্ধতি।

এখন আরেকটি বিষয় নিয়ে ভাবি। এতক্ষণ দেখা গিয়েছে, একটি গুণাকার কাঠামোতে, একটি নির্দিষ্ট সংখ্যা বা ভিত্তি যে কয়বার থাকছে, সেই সংখ্যাটিকে ওই ভিত্তির জন্য আমরা সূচক বা ঘাত হিসেবে ব্যবহার করতে পারি। না বুঝতে পারলে উপরের চিত্রটি আবার দেখো।

এবার, ছক ১.৮ থেকে একটি উদাহরণ দেখা যাক।

google news
গুগল নিউজে আমাদের ফলো করুন

১০^৩ = ১০ x ১০ x ১০

এখানে ৩ টি ১০ গুণাকারে আছে দেখে ১০ এর উপর ঘাত হিসেবে রয়েছে ৩।

তাহলে চিন্তা করে দেখো, ছক ১.৩ এ তুমি কি করেছিলে? গুনে দেখো সেখানে কতটি সংখ্যা ছিল? সেখানে কিন্তু ১ টি মাত্র সংখ্যা ছিল। আবার উদাহরণ হিসেবে বলা যায়, শুধু ১০ লিখলে সেখানে ১ টিই ১০ থাকে ।

এই ক্ষেত্রেও সূচকীয় প্রকাশ করা যায়। আর সেই ঘাত বা সূচকটি আমাদের নতুন শেখা নিয়ম অনুযায়ীই হবে। অর্থাৎ, শুধু একটি সংখ্যা বা ১০ কে লেখা যায় ১০’ হিসেবে।

তাহলে ছক ১.১১ পূরণ করো। পরবর্তীতে ছক ১.১১ এর ন্যায় ছক নিজের খাতায় অঙ্কন করো এবং ৯ সংখ্যাটির জন্য সেটি পূরণ করো।

 

 

গুণের গণনার খেলা

 

আশা করি তোমরা এতক্ষণে সূচক সম্পর্কে একটি বিস্তারিত ধারণা পেয়ে গেছো। এবার তাহলে আমরা নিচের ছকটি পূরণ করার চেষ্টা করি।

 

গুণের গণনার খেলা

 

চলো, আমরা আবার আমাদের সেই কাগজ ভাঁজের খেলার কথা ভাবি। তোমরা সেখান থেকে কি সূচকের কোন ধারণা করতে পারো? যদি পারো, তাহলে, ছক ১.১৪ পূরণ করো এবং পরবর্তীতে প্রতিবারে সমান ৩ ভাগ করে ভাঁজের জন্য ছক ১.১৪ এর ন্যায় নিজের খাতায় ছক অঙ্কন করে পূরণ করো।

 

গুণের গণনার খেলা

 

এখন একটি বিষয় চিন্তা করো, তুমি যখন কোন ভাঁজ করো নি, তখনও কিন্তু চারপাশে দাগটানা পুরো কাগজটিকেই একটি ঘর হিসেবে চিন্তা করা যায়।

কোন ভাঁজ না থাকলে ভাঁজ সংখ্যা ০, কিন্তু ঘর কতটি থাকছে? ১ টি। এবার আরেকটি মজার বিষয় দেখো, তুমি প্রতিবারে যে কয়টি করেই ধনাত্মক সংখ্যক ভাঁজ করতে চাও না কেন, একদম প্রথমবারে, অর্থাৎ শূণ্য ভাঁজে ঘর সেই ১ টিই থাকবে। এখান থেকে তোমরা কিছু বুঝতে পারছো কি?

আরও দেখুনঃ

Leave a Comment