আমাদের আজকের আলোচনার বিষয় গনিতে গড় – যা তথ্য অনুসন্ধান ও বিশ্লেষণ এর অন্তর্ভুক্ত। যা দ্বিমাত্রিক বস্তুর গল্প এর অন্তর্ভুক্ত। গণিত হল জ্ঞানের একটি ক্ষেত্র যাতে সংখ্যা, সূত্র এবং সম্পর্কিত কাঠামো, আকার এবং সেগুলির মধ্যে থাকা স্থানগুলি এবং পরিমাণ এবং তাদের পরিবর্তনগুলি অন্তর্ভুক্ত থাকে। এই বিষয়গুলি যথাক্রমে সংখ্যা তত্ত্বের প্রধান উপশাখা,বীজগণিত, জ্যামিতি, এবং বিশ্লেষণ। তবে একাডেমিক শৃঙ্খলার জন্য একটি সাধারণ সংজ্ঞা সম্পর্কে গণিতবিদদের মধ্যে কোন সাধারণ ঐকমত্য নেই।
গণিতে সংখ্যা ও অন্যান্য পরিমাপযোগ্য রাশিসমূহের মধ্যকার সম্পর্ক বর্ণনা করা হয়। গণিতবিদগন বিশৃঙ্খল ও অসমাধানযুক্ত সমস্যাকে শৃঙ্খলভাবে উপস্থাপনের প্রক্রিয়া খুঁজে বেড়ান ও তা সমাধানে নতুন ধারণা প্রদান করে থাকেন।গাণিতিক প্রমাণের মাধ্যমে এই ধারণাগুলির সত্যতা যাচাই করা হয়। গাণিতিক সমস্যা সমাধান সম্পর্কিত গবেষণায় বছরের পর বছর, যুগের পর যুগ বা শত শত বছর পর্যন্ত লেগে যেতে পারে। গণিতের সার্বজনীন ভাষা ব্যবহার করে বিজ্ঞানীরা একে অপরের সাথে ধারণার আদান-প্রদান করেন। গণিত তাই বিজ্ঞানের ভাষা।
গনিতে গড়
গড়, গণিতে ব্যবহৃত এমন একটি সংখ্যাকে বোঝায় যা সংখ্যার গোষ্ঠী বা ডাটা সেট এর সাধারণ প্রতিনিধিত্ব করে। কিছু রাশি একত্র করে তাদের সংখ্যা দ্বারা ভাগ করতে হয়। অর্থাৎ উপাত্তসমূহের সংখ্যাসূচক মানের সমষ্টিকে উপাত্তসমূহের মোট সংখ্যা দ্বারা ভাগ করতে হয়। আমাদের দৈনন্দিন জীবনে গড়ের ব্যবহার অনেক দেখে বা শুনে থাকি। যেমন: আমাদের গড় মাথাপিছু আয়, ইলিশের বাৎসরিক গড় উৎপাদন, ক্রিকেট খেলায় একজন বোলারের ওভার প্রতি গড় উইকেট প্রাপ্তি, শ্রেণিকক্ষে শিক্ষার্থীদের গড় উপস্থিতি ইত্যাদি।
নিজের উচ্চতা (সেন্টিমিটারে) মাপি এবং উচ্চতার গড় নির্ণয় করি
ছক: নিজেদের উচ্চতা (সেন্টিমিটারে) পরিমাপ করে নিচের তালিকাটি পূরণ করি
ক্রমিক নম্বর | উচ্চতা (সে.মি.) | ক্রমিক নম্বর | উচ্চতা (সে.মি.) |
১ | ১১ | ||
২ | ১২ | ||
৩ | ১৩ | ||
৪ | ১৪ | ||
৫ | ১৫ | ||
৬ | ১৬ | ||
৭ | ১৭ | ||
৮ | ১৮ | ||
৯ | ১৯ | ||
১০ | ২০ |
ক) আমাদের উচ্চতার সাংখ্যিক মানের সমষ্টি……………….সেন্টিমিটার।
খ) আমাদের উচ্চতার গড়………. সেন্টিমিটার।
গাণিতিক গড় দেখে সংগৃহীত উপাত্তের বৈশিষ্ট্য সমন্ধে নেয়া সিদ্ধান্ত অনেক সময় বাস্তবতার সাথে মিলে না। বিষয়টি বোঝা যাচ্ছে না, তাই না? তাহলে চলো একটি গল্পের মাধ্যমে বুঝতে চেষ্টা করি।
মনে করো, তোমরা কয়েক বন্ধু ও তাদের পরিবারের সবাই মিলে বনভোজনে যাবে ঠিক করেছ। বনভোজনে বিভিন্ন খেলার ব্যবস্থা থাকবে এবং বিজয়ীদের পুরস্কার দেয়া হবে। সেখানে পরিবারের যে সকল সদস্যের বয়স ২০ বছর বা তার বেশি তাদের জন্য খেলার ব্যবস্থা থাকবে। আর যাদের বয়স ২০ বছরের কম তাদের জন্য অন্য একটা খেলার ব্যবস্থা করা হবে। তুমি হিসাব করে দেখলে সব পরিবার মিলিয়ে ২০ বছরের কম বয়সী সদস্য আছে মোট ৯ জন। তাদের মধ্যে ৫ জনের বয়স ৩ বছর, ২ জনের বয়স ১২ বছর, ১ জনের বয়স ১৪ বছর এবং ১ জনের বয়স ১৯ বছর।
তাহলে, এই ৯ জনের গড় বয়স
= (3+3+3+৩+৩+১২+১২+১৪+১৯)/ ৯
= ৭২/৯ = ৮ বছর
ধরা যাক, খেলা হিসেবে এই গড়ের ধারণা নিয়ে একটা কুইজ এর ব্যবস্থা করা হলো। আর কুইজের প্রশ্ন হলো ৮ বছর বয়স উপযোগী শিক্ষার্থীর মতো:
ক) ২৭ + ২১ + ১৫ = ?
খ) ২৬৩৯ – ৩০৫ = ?
গ) ৭৯ × ৬৩ = ?
ঘ) ২০ টাকার কয়টি নোট = ৫০০ টাকা?
কুইজের ফলাফল কী হবে বুঝতেই পারছ। ৩ বছর বয়সের শিশুরা এগুলো পারবেই না। আবার, ১২, ১৪ ও ১৯ বছর বয়সের যারা আছে তারা এমনিতেই সব পারবে। ফলে খেলায় মজাই পাবে না। এখানে গড় নির্ণয় ঠিক আছে কিন্তু এক্ষেত্রে তা ব্যবহার উপযোগী নয়। তাহলে আমরা বলতে পারি, গড়ের ধারণা থেকে বাস্তব অবস্থা সবসময় সঠিকভাবে বোঝা যায় না। উপাত্তসমূহকে মানের ক্রমানুসারে সাজালে মাঝখানের যে বা যারা অবস্থান করবে এবং যে সকল উপাত্ত সর্বাধিকবার থাকবে তাদের জানা অপরিহার্য।
আরও দেখুনঃ