আমাদের আজকের আলোচনার বিষয় বিভাজ্যতার ধারণা – যা সংখ্যার গল্প এর অন্তর্ভুক্ত। গণিত হল জ্ঞানের একটি ক্ষেত্র যাতে সংখ্যা, সূত্র এবং সম্পর্কিত কাঠামো, আকার এবং সেগুলির মধ্যে থাকা স্থানগুলি এবং পরিমাণ এবং তাদের পরিবর্তনগুলি অন্তর্ভুক্ত থাকে। এই বিষয়গুলি যথাক্রমে সংখ্যা তত্ত্বের প্রধান উপশাখা,বীজগণিত, জ্যামিতি,এবং বিশ্লেষণ।তবে একাডেমিক শৃঙ্খলার জন্য একটি সাধারণ সংজ্ঞা সম্পর্কে গণিতবিদদের মধ্যে কোন সাধারণ ঐকমত্য নেই।
গণিতে সংখ্যা ও অন্যান্য পরিমাপযোগ্য রাশিসমূহের মধ্যকার সম্পর্ক বর্ণনা করা হয়। গণিতবিদগন বিশৃঙ্খল ও অসমাধানযুক্ত সমস্যাকে শৃঙ্খলভাবে উপস্থাপনের প্রক্রিয়া খুঁজে বেড়ান ও তা সমাধানে নতুন ধারণা প্রদান করে থাকেন। গাণিতিক প্রমাণের মাধ্যমে এই ধারণাগুলির সত্যতা যাচাই করা হয়। গাণিতিক সমস্যা সমাধান সম্পর্কিত গবেষণায় বছরের পর বছর, যুগের পর যুগ বা শত শত বছর পর্যন্ত লেগে যেতে পারে। গণিতের সার্বজনীন ভাষা ব্যবহার করে বিজ্ঞানীরা একে অপরের সাথে ধারণার আদান-প্রদান করেন। গণিত তাই বিজ্ঞানের ভাষা।
বিভাজ্যতার ধারণা
যদি একটি পূর্ণসংখ্যাকে অন্য একটি পূর্ণ সংখ্যা দিয়ে ভাগ করলে ভাগশেষ ০ হয় তখন আমরা বলি প্রথম সংখ্যাটি (ভাজ্য) দ্বিতীয় সংখ্যা (ভাজক) দ্বারা নিঃশেষে বিভাজ্য।
সংখ্যারেখার সাহায্যে অথবা প্রচলিত পদ্ধতিতে ভাগ করে ১২ সংখ্যাটি ১, ২,৩, ৪, ৫, ৬ ও ৭ দ্বারা নিঃশেষে বিভাজ্য কিনা যাচাই করো।
২ ও ৪ দিয়ে বিভাজ্যতার নিয়ম ও স্থানীয়মানের সাহায্যে কারণ ব্যাখ্যা ২ দ্বারা বিভাজ্য
২ এর কয়েকটি গুণিতক লিখে পাই,
২০০ = ০, ২×১ = ২, ২×২ = ৪, ২x৩ = ৬, ২×৪ = ৮,
২x৫ = ১০, ২০৬ = ১২, ২০৭ = ১৪, ২০৮ = ১৬, ২০৯ = ১৮ ইত্যাদি।
গুণফলের প্রক্রিয়া লক্ষ করি। যে কোনো সংখ্যাকে ২ দ্বারা গুণ করলে গুণফলের একক স্থানীয় অঙ্কটি হবে ০,২, ৪, ৬ বা ৮। সুতরাং দেখা যাচ্ছে, কোনো সংখ্যার একক স্থানীয় অঙ্ক ০, ২, ৪, ৬ বা ৮ হলে, সংখ্যাটি ২ দ্বারা বিভাজ্য হবে। এবারে স্থানীয়মানের সাহায্যে দেখে নেই আমাদের
পর্যবেক্ষণ সত্যি কিনা।
৩৫১৬ কে স্থানীয় মানে লিখলে হয়
৩৫১৬ = ৩০০০ + ৫০০ + ১০ + ৬
এখানে, একক স্থানীয় অঙ্ক = ৬, যা ২ দ্বারা বিভাজ্য। এছাড়া এককের বামদিকের যেকোনো অঙ্কের স্থানীয় মান ২ দ্বারা বিভাজ্য।
অর্থাৎ একক স্থানীয় অঙ্কটি ২ দ্বারা বিভাজ্য হলে সংখ্যাটিও ২ দ্বারা বিভাজ্য। এরূপ সংখ্যাকে আমরা জোড় সংখ্যা বলে জানি।
আবার, ৩৫১৭ কে স্থানীয় মানে লিখলে হয়
৩৫১৭ = ৩০০০+৫০০+১০+৭
এখানে, একক স্থানীয় অঙ্ক = ৭, যা ২ দ্বারা বিভাজ্য নয়। এছাড়া এককের বামদিকের যে কোনো অঙ্কের স্থানীয় মান ২ দ্বারা বিভাজ্য।
অর্থাৎ একক স্থানীয় অঙ্কটি ২ দ্বারা বিভাজ্য না হলে সংখ্যাটিও ২ দ্বারা বিভাজ্য হবে না। এরূপ সংখ্যাকে আমরা বিজোড় সংখ্যা বলে জানি।
কোনো সংখ্যার একক স্থানীয় অঙ্কে শূন্য অথবা জোড় সংখ্যা হলে সংখ্যাটি ২ দ্বারা বিভাজ্য হবে।
৪ দ্বারা বিভাজ্য
৩৫১২ কে স্থানীয় মানে লিখলে হয়
৩৫১২ = ৩০০০ + ৫০০ + ১০ + ২
এখানে, ১০, ৪ দ্বারা বিভাজ্য নয়। কিন্তু দশকের বামদিকের যে কোনো অঙ্কের স্থানীয় মান ৪ দ্বারা বিভাজ্য।
আবার, ৩৫১২ = ৩০০০ + ৫০০ + ১২
এখানে, ১২, ৪ দ্বারা বিভাজ্য। সুতরাং ৩৫১২ সংখ্যাটি ৪ দ্বারা বিভাজ্য। অর্থাৎ একক ও দশক স্থানীয় অঙ্ক
দুইটি দ্বারা গঠিত সংখ্যাটি ৪ দ্বারা বিভাজ্য হওয়ায় সংখ্যাটি ৪ দ্বারা বিভাজ্য।
কোনো সংখ্যার একক ও দশক স্থানের অঙ্ক দুইটি দ্বারা গঠিত সংখ্যা ৪ দ্বারা বিভাজ্য হলে, প্রদত্ত সংখ্যাটি ৪ দ্বারা বিভাজ্য হবে। অথবা একক ও দশক স্থানের অঙ্ক দুইটি শূন্য হলে, সংখ্যাটি ৪ দ্বারা বিভাজ্য।
৫ দ্বারা বিভাজ্য
৫ এর কয়েকটি গুণিতক লিখি। ৫০০ = ০, ৫×১ = ৫, ৫×২=১০, ৫০৩ = ১৫, ৫×৪ = ২০, ৫×৫ = ২৫, ৫×৬ = ৩০, ৫×৭ = ৩৫, ৫×৮ = ৪০, ৫×৯ = ৪৫ ইত্যাদি। গুণফলের প্রক্রিয়া লক্ষ করে দেখি যে, কোনো সংখ্যাকে ৫ দিয়ে গুণ করলে গুণফলের একক স্থানীয় অঙ্কটি হবে ০ বা ৫। সুতরাং দেখা যাচ্ছে, একক স্থানে ০ বা ৫ অঙ্কযুক্ত সংখ্যা ৫ দ্বারা বিভাজ্য হবে।
৩, ৬, ৯ দিয়ে বিভাজ্যতার নিয়ম ও স্থানীয়মানের সাহায্যে কারণ ব্যাখ্যা ৩ দ্বারা বিভাজ্য
এখানে, ৪ × ৩ × ৩ এবং ১ × ৩ × ৩৩ সংখ্যাগুলো ৩ দ্বারা বিভাজ্য এবং একক, দশক ও শতক স্থানীয় অঙ্কগুলোর যোগফল = ১+৪+ ৭ = ১২; যা ৩ দ্বারা বিভাজ্য।
ফলে, ১৪৭ সংখ্যাটি ৩ দ্বারা বিভাজ্য।
আবার, ১৪৮ সংখ্যাটি বিবেচনা করি।
এখানে, ৪ × ৩ × ৩ এবং ১ × ৩ × ৩৩ সংখ্যাগুলো ৩ দ্বারা বিভাজ্য। কিন্তু একক, দশক ও শতক স্থানীয় অঙ্কগুলোর যোগফল = ১+৪+ ৮ = ১৩; যা ৩ দ্বারা বিভাজ্য নয়। ফলে, ১৪৮ সংখ্যাটি ৩ দ্বারা বিভাজ্য নয়।
কোনো সংখ্যার অঙ্কগুলোর যোগফল ৩ দ্বারা বিভাজ্য হলে, প্রদত্ত সংখ্যাটি ৩ দ্বারা বিভাজ্য হবে।
৬ দ্বারা বিভাজ্য
কোনো সংখ্যা ২ এবং ৩ দ্বারা বিভাজ্য হলে সংখ্যাটি ৬ দ্বারা বিভাজ্য হবে।
৯ দ্বারা বিভাজ্য
৩৭৮ সংখ্যাটি বিবেচনা করি।
এখানে, ৭ × ৯ ৩৩ × ৯ × ১১ প্রত্যেকে ৯ দ্বারা বিভাজ্য এবং একক, দশক ও শতক স্থানীয় অঙ্কগুলোর যোগফল = ৩ + ৭ +৮ = ১৮, যা ৯ দ্বারা বিভাজ্য। ফলে, ৩৭৮ সংখ্যাটি ৯ দ্বারা বিভাজ্য।
কোনো সংখ্যার অঙ্কগুলোর যোগফল ৯ দ্বারা বিভাজ্য হলে, প্রদত্ত সংখ্যাটি ৯ দ্বারা বিভাজ্য হবে।
১১ দ্বারা বিভাজ্যতা
৩০৮, ১৩৩১ এবং ৬১৮০৯ সংখ্যাগুলি সবই ১১ দ্বারা বিভাজ্য।
নিচের সারণি ব্যবহার করে আমরা ১১ দিয়ে বিভাজ্যতার কোনো সহজ নিয়ম খুঁজে পাই কিনা দেখি।
সংখ্যা | ডান থেকে অঙ্কের যোগফল (বিজোড় জায়গায়) | ডান থেকে অঙ্কের যোগফল (জোড় জায়গায়) | পার্থক্য |
৩০৮ | ৮+৩=১১ | ০ | ১১-০=১১ |
১৩৩১ | ১+৩=৪ | ৩+১=৪ | 8-8=0 |
৬১৮০৯ | ৯+৮+৬=২৩ | ০+১=১ | ২৩-১=২২ |
তিন কার্ডের ম্যাজিক
- একটি কাগজকে আট টুকরো করে টুকরোগুলোর উপর ১ থেকে ৮ পর্যন্ত সংখ্যাগুলো লেখো।
১ | ২ | ৩ | ৪ |
৫ | ৬ | ৭ | ৮ |
- আট টুকরো কাগজ থেকে ইচ্ছামতো তিনটি কাগজ নির্বাচন করো।
(উদাহরণ)
নির্বাচিত সংখ্যা কার্ড
২ | ৬ | ৩ |
- তিনটি কাগজে যে তিনটি সংখ্যা রয়েছে সেগুলো দিয়ে তিন অঙ্কের সবচেয়ে বড় সংখ্যা এবং সবচেয়ে ছোট সংখ্যা তৈরি করে বৃহত্তম সংখ্যা থেকে ক্ষুদ্রতম সংখ্যা বিয়োগ করো।
(উদাহরণ)
- এবার, ম্যাজিক দেখানোর পালা।
- একজন একজন করে প্রত্যেকের বিয়োগফলের শুধুমাত্র একক স্থানীয় অঙ্কটি শিক্ষককে বলো। (চিত্রে প্রদর্শিত উদাহরণের ক্ষেত্রে একক স্থানীয় অঙ্ক হবে = ৬)
- তোমার শিক্ষক বাকি দুইটি অঙ্ক (দশক ও শতক স্থানীয়) বলে দিবেন।
- তুমিও কি পারবে শিক্ষকের মতো এরকম ম্যাজিক দেখাতে? চেষ্টা করেই দেখো নিজে নিজে এই ম্যাজিকের রহস্য বের করতে পার কিনা?
তোমার বন্ধুদের ম্যাজিকটি দেখাও।
নিজের পরিবারের সদস্য, আত্মীয় স্বজন এবং প্রতিবেশীদের ম্যাজিকটি দেখাও।
প্রিয় নামে বয়স জানো
সবুজ ঘরে পাওয়া সংখ্যাটি শিক্ষককে বলো। শিক্ষক তোমার বয়স বলে দিবেন।
তোমার বন্ধুদের ম্যাজিকটি দেখাও।
নিজের পরিবারের সদস্য, আত্মীয় স্বজন এবং প্রতিবেশীদের স্যাজিকটি দেখাও।
আরও দেখুনঃ