আজকে আমাদের আলোচনার বিষয়ঃ সাধারণ ভগ্নাংশের গুণনীয়ক । এটি সপ্তম শ্রেনী গণিতের অজানা রাশির সূচক, গুণ ও তাদের প্রয়োগ এর অন্তর্গত।
সাধারণ ভগ্নাংশের গুণনীয়ক
প্রথমে একটি ভগ্নাংশের গুণনীয়ক নিয়ে চিন্তা করি। পূর্ণসংখ্যার গুণনীয়কের সাথে তুলনা করে আমরা দেখতে পাই, কোন একটি পূর্ণসংখ্যার গুণনীয়ক সেই পূর্ণসংখ্যাগুলো, যেগুলো দ্বারা পূর্ণসংখ্যাটি নিঃশেষে বিভাজ্য। যেমন ১২ সংখ্যাটি ১, ২, ৩, ৪, ৬ এবং ১২ দ্বারা নিঃশেষে বিভাজ্য। এখন আমরা ১২ কে ৫ দ্বারা ভাগ করলে কি কোন পূর্ণসংখ্যা পাই? উত্তর হবে না।
এখন একটি সাধারণ ভগ্নাংশের ক্ষেত্রে কী হবে বিষয়টি? চলো আগে একটি খেলা খেলি।
গুণনীয়ক খুঁজি
প্রথমেই একটি কাগজ নাও ।
এবার কাগজটিকে সমান দুই ভাগ করে কাটো। তাহলে একটি খণ্ডিত অংশ হবে মূল কাগজের – অংশ। এবার আবার আরও ৩ টি কাগজ নাও এবং সেগুলোকে যথাক্রমে সমান ৩, ৪ ও ৫ খণ্ডে বিভক্ত করো ও নিচের ছকটি পূরণ করো।
ছক ১
দেখো, ছক থেকে কিন্তু আমরা কয়েকটি ভগ্নাংশ পেয়ে গেলাম। এবার আমরা সমদ্বিখণ্ডিত করা ২ টি খন্ড থেকে একটি নিই। খণ্ডটিকে আমরা কিন্তু ১/২ বলতে পারি।
এবার চিন্তা করো তো, এই খন্ডটিকে কি তুমি সমান দুই ভাগে ভাঁজ করতে পারবে? এখন ভাবো তো, ভাঁজ করার পর যে দুটি ভাগ পাওয়া যাবে, সেগুলো খন্ডটির কত ভাগ? খুব সহজেই বলা যায়, এটিও কিন্তু খন্ডটির ১/২ ভাগ হবে। কিন্তু আমরা দেখে এসেছি, খন্ডটি কিন্তু নিজে ১/২। তাহলে মূল যে কাগজ ছিল, সেটির কত অংশ হবে এই একেকটি ভাগ? সহজেই বলা যায় = (১/২ /২) = ১/৪ অংশ। এবার তাহলে চিন্তা করো, সমান ২ ভাঁজের জায়গায়, সমান ৩ ভাঁজ করা হলে, প্রতিটি ভাগ মূল কাগজের কত ভাগ হত? কিংবা সমান ৪, ৫ ও ৬ ভাঁজ করা হলে তা মূল কাগজের কত ভাগ হত? সেটি নিচের ছকে পূরণ করো।
ছক ২
(আংশিক পূর্ণ করা আছে। তোমাদের কাজের মাধ্যমে সম্পূর্ণ করো. প্রয়োজনে নিজের খাতায় ছকটি অঙ্কন করে পূরণ করো। )
এখন তাহলে কি দেখতে পাচ্ছো? তুমি কিন্তু প্রত্যেকবারই পূর্ণসংখ্যকবার সমান ভাঁজ করছো এবং সেটির সাপেক্ষে একটি ভগ্নাংশ পাচ্ছো।
এখন ভেবে দেখো তো এভাবে ভাঁজের মাধ্যমে আমরা কী পাচ্ছি? উপরের উদাহরণের ওই – খন্ড থেকে চিন্তা করি। – খণ্ডটিকে সমান ৩ ভাঁজ করার মানে আসলে সেটিকে ৩ দিয়ে ভাগ করা। তার মানে আমরা এই কাগজ ভাঁজের খেলা থেকে মূলত আমরা একটি ভগ্নাংশকে একটি পূর্ণ সংখ্যা দ্বারা ভাগ করছি। অর্থাৎ, যে কয়টি সমান ভাঁজ করছি, সেই পূর্ণসংখ্যা দিয়ে ভগ্নাংশকে ভাগ করা হচ্ছে।
এভাবে আসলে কী পাওয়া যাচ্ছে ভাবো তো? ভগ্নাংশের যে গুণনীয়ক, সেটিই কিন্তু এভাবে নির্ণয় হচ্ছে। তাহলে ভগ্নাংশের গুণনীয়ক কোনগুলো? একটি ভগ্নাংশকে একটি পূর্ণসংখ্যা দিয়ে ভাগ করলে আমরা যে আরেকটি ভগ্নাংশ বা পূর্ণসংখ্যা পাই, সেটিই ওই ভগ্নাংশটির একটি গুণনীয়ক।
এখন, চিন্তা করো, আমাদের ১/২ খণ্ডটিকে সমান ১ ভাগে ভাঁজ করার মানে কি হতে পারে? এতে কিন্তু আসলে কোন ভাঁজ হচ্ছে না। সেই কাগজটিই কোন ভাঁজ ছাড়া থাকছে। তার মানে কি? ভগ্নাংশটি নিজেও কিন্তু ওই ভগ্নাংশের একটি গুণনীয়ক। কারণ ১ ও তো একটি পূর্ণসংখ্যা। তাই, ১ দিয়ে ভাগ করলেও কিন্তু একটি পূর্ণসংখ্যা বা ভগ্নাংশই পাওয়া যাচ্ছে।
এবার তাহলে চলো আমরা নিচের ছকটি পূরণ করে একটি গুণনীয়ক টেবিল তৈরি করি। তোমরা প্রতিটি ভগ্নাংশেরই প্রথম ১০ টি করে গুণনীয়ক নির্ণয় করবে। ছকটি আংশিকভাবে পূর্ণ করা হয়েছে।
ছক ৩
দেখো, এভাবেই তুমি চাইলে যেকোনো ভগ্নাংশের গুণনীয়ক নির্ণয় করতে পারবে।
এখন চিন্তা করে দেখো তো, আমরা কিন্তু প্রত্যেকবারই ১০ টি করে গুণনীয়ক নির্ণয় করছি। আমরা এখন চাই সবগুলো গুণনীয়ক নির্ণয় করতে। এবার তোমরা নিজের খাতায় – ভগ্নাংশটির সবগুলো গুণনীয়ক নির্ণয় করার চেষ্টা করো।
তুমি কি সবগুলো গুণনীয়ক নির্ণয় করতে পেরেছো? হিসাব করলে দেখবে তুমি কখনই সবগুলো গুণনীয়ক নির্ণয় করতে পারবে না। কারণ, পূর্ণসংখ্যা আসলে অসীমসংখ্যক আছে। তাই একটি সাধারণ ভগ্নাংশকে অসীমসংখ্যক পূর্ণসংখ্যা দিয়ে ভাগ করা যাবে। আর কোন সাধারণ ভগ্নাংশকে পূর্ণ সংখ্যা দিয়ে ভাগ করা হলে, সেটিকে অবশ্যই একটি ভগ্নাংশ বা পূর্ণসংখ্যা আকারে প্রকাশ করা সম্ভব হবে। অর্থাৎ, সাধারণ ভগ্নাংশের গুণনীয়ক কিন্তু পূর্ণসংখ্যার গুণনীয়ককের মত নির্দিষ্ট সংখ্যক নয়। সাধারণ ভগ্নাংশের গুণনীয়ক অসীমসংখ্যক হয়।
আরও দেখুনঃ