সেটের ধারণা

আজকে আমাদের আলোচনার বিষয়ঃ সেটের ধারণা । এটি অষ্টম শ্রেনী গণিতের সেট এর অন্তর্গত।

 

সেটের ধারণা

 

সেটের ধারণা

সেট শব্দটি আমাদের সুপরিচিত। যেমন : টিসেট, সোফাসেট, ডিনারসেট, এক সেট বই ইত্যাদি । জার্মান গণিতবিদ জর্জ ক্যান্টর (১৮৪৫-১৯১৮) সেট সম্পর্কে ধারণা ব্যাখ্যা করেন । সেট সংক্রান্ত তাঁর ব্যাখ্যা গণিত শাস্ত্রে সেটতত্ত্ব (Set Theory) হিসেবে পরিচিত । সেটের প্রাথমিক ধারণা থেকে প্রতীক ও চিত্রের মাধ্যমে সেট সম্পর্কে জ্ঞান অর্জন করা আবশ্যক ।

কোনো সেট গঠন করতে হলে যে শর্ত পূরণ করতে হয়, তা হলো যে কোনো বস্তু সেটটির সদস্য কি না তা কোনো দ্ব্যর্থতা ছাড়া নিরূপণ করা যাবে।

 

সেটের ধারণা

 

বাস্তব বা চিন্তাজগতের সু-সংজ্ঞায়িত বস্তুর সমাবেশ বা সংগ্রহকে সেট বলে। ইংরেজি বর্ণমালার প্রথম পাঁচটি বর্ণ, এশিয়া মহাদেশের দেশসমূহ, স্বাভাবিক সংখ্যা ইত্যাদির সেট সু-সংজ্ঞায়িত সেটের উদাহরণ । কোন বস্তু বিবেচনাধীন সেটের অন্তর্ভুক্ত আর কোনটি নয় তা সুনির্দিষ্টভাবে নির্ধারিত হতে হবে । সেটের বস্তুর কোনো পুনরাবৃত্তি ও ক্রম নেই ।

সেটের প্রত্যেক বস্তুকে সেটের উপাদান (element) বলা হয়। সেটকে সাধারণত ইংরেজি বর্ণমালার বড় হাতের অক্ষর A,B,C,.., X, Y, Z দ্বারা এবং উপাদানকে ছোট হাতের অক্ষর a, b, c, x, y, z দ্বারা প্রকাশ করা হয় ।

 

সেটের উপাদানগুলোকে{ } এই প্রতীকের মধ্যে অন্তর্ভুক্ত করে সেট হিসেবে ব্যবহার করা হয় । যেমন : a,b,c-এর সেট {a,b,c}; তিস্তা, মেঘনা, যমুনা ও ব্রহ্মপুত্র নদ-নদীর সেট {তিস্তা, মেঘনা, যমুনা, ব্রহ্মপুত্র}, প্রথম দুইটি জোড় স্বাভাবিক সংখ্যার সেট {2, 4}; 6 এর গুণনীয়কসমূহের সেট {1, 2, 3, 6} ইত্যাদি । মনে করি, সেট A এর একটি উপাদান । একে গাণিতিকভাবে x ∈ A প্রতীক দ্বারা প্রকাশ করা হয় । x ∈ A কে পড়তে হয়, ×, A সেটের উপাদান (x belongs to A)। যেমন, B = {m, n} হলে, m∈ B এবং ne B.

উদাহরণ ১।

প্রথম পাঁচটি বিজোড় সংখ্যার সেট A হলে, A = {1, 3, 5, 7, 9}

Leave a Comment