সদৃশ ও বিসদৃশ পদ । মাধ্যমিক ৬ষ্ট শ্রেণি গণিত, ২০২৩

আমাদের আজকের আলোচনার বিষয় সদৃশ ও বিসদৃশ পদ – যা অজানা রাশির জগৎ অধ্যায় এর অন্তর্ভুক্ত।১৭শ শতক পর্যন্ত কেবল পাটীগণিত, বীজগণিত ও জ্যামিতিকে গাণিতিক শাস্ত্র হিসেবে গণ্য করা হত। সেসময় গণিত দর্শন ও বিজ্ঞানের চেয়ে কোন পৃথক শাস্ত্র ছিল না। আধুনিক যুগে এসে গণিত বলতে যা বোঝায়, তার গোড়াপত্তন করেন প্রাচীন গ্রিকেরা, পরে মুসলমান পণ্ডিতেরা এগুলি সংরক্ষণ করেন, অনেক গবেষণা করেন এবং খ্রিস্টান পুরোহিতেরা মধ্যযুগে এগুলি ধরে রাখেন। তবে এর সমান্তরালে ভারতে এবং চীন-জাপানেও প্রাচীন যুগ ও মধ্যযুগে স্বতন্ত্রভাবে উচ্চমানের গণিতচর্চা করা হত। ভারতীয় গণিত প্রাথমিক ইসলামী গণিতের উপর গভীর প্রভাব ফেলেছিল।

১৭শ শতকে এসে আইজাক নিউটন ও গটফ্রিড লাইবনিৎসের ক্যালকুলাস উদ্ভাবন এবং ১৮শ শতকে অগুস্তঁ লুই কোশি ও তার সমসাময়িক গণিতবিদদের উদ্ভাবিত কঠোর গাণিতিক বিশ্লেষণ পদ্ধতিগুলির উদ্ভাবন গণিতকে একটি একক, স্বকীয় শাস্ত্রে পরিণত করে। তবে ১৯শ শতক পর্যন্ত কেবল পদার্থবিজ্ঞানী, রসায়নবিদ ও প্রকৌশলীরাই গণিত ব্যবহার করতেন।

 

সদৃশ ও বিসদৃশ পদ

 

সদৃশ ও বিসদৃশ পদ

সামিরা ও অনন্যা দোকানে গেল। দোকান থেকে সামিরা পাঁচটি কলম ও তিনটি খাতা এবং অনন্যা চারটি কলম ও দুইটি পেন্সিল ক্রয় করে।

তোমরা নিশ্চয়ই বলতে পারবে দু’জনের কেনা জিনিসগুলোর মধ্যে কোন জিনিসটি একই বা মিল রয়েছে? যে একই রকম জিনিস (কলম) দু’জনেই ক্রয় করেছে, ঐটিই হলো সদৃশ জিনিস। তারা দু’জনে আরও দুইটি ভিন্ন জিনিস (খাতা ও পেন্সিল) কিনেছে। তাহলে ঐ ভিন্ন জিনিস দু’টি হলো বিসদৃশ জিনিস।

তাহলে সদৃশ ও বিসদৃশ সম্পর্কে তোমাদের কিছুটা ধারণা হয়তো হয়েছে।

এবার চলো বীজগাণিতিক রাশির মধ্যে সদৃশ ও বিসদৃশ পদ খোঁজার চেষ্টা করি।

 

google news
গুগল নিউজে আমাদের ফলো করুন

 

নিচের বীজগাণিতিক রাশিগুলো নিবিড়ভাবে পর্যবেক্ষণ করো:

(i) 2x + 3x (ii) 5aby7yba (iii) – xyz + 11yxz

(i) নং এ 2x এর উৎপাদক 2, x এবং 3, x হলো 3x এর উৎপাদক। দেখা যাচ্ছে, উভয়ের বীজগণিতীয় উৎপাদক একই। অর্থাৎ পদ দুইটির একমাত্র পার্থক্য রয়েছে সাংখ্যিক সহগে। এই ধরনের পদগুলোকে সদৃশ পদ বলা হয়।

একইভাবে (ii) এবং (iii) নং রাশির পদগুলো সদৃশ পদ হবে কিনা ভেবে দেখো তো?

অপর দিকে (iv) 3xy2y (v) 13p + 13q (vi) 2ab + 5a – 19c রাশিগুলো পর্যবেক্ষণ করে দেখা যায় যে, (iv) নং এর 3xy এবং – 2y পদ দুইটির বীজগণিতীয় উৎপাদক ভিন্ন। তাই এ ধরনের পদগুলোকে বিসদৃশ পদ বলে থাকি। একাধিক পদের বীজগণিতীয় উৎপাদক ভিন্ন হলে এবং তাদের সাংখ্যিক সহগ সমান হলেও পদগুলো বিসদৃশ পদ হবে। যেমন: (v) 13p + 13q এর 13p এবং 13q পদদ্বয় বিসদৃশ পদ।

 

সংখ্যার গল্প । মাধ্যমিক ৬ষ্ট শ্রেণি গণিত, ২০২৩

আরও দেখুনঃ

Leave a Comment